
NAG Fortran Library Routine Document

D03PRF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03PRF integrates a system of linear or nonlinear, first-order, time-dependent partial differential equations
(PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs), and
automatic adaptive spatial remeshing. The spatial discretization is performed using the Keller box scheme
(see Keller (1970)) and the method of lines is employed to reduce the PDEs to a system of ODEs. The
resulting system is solved using a Backward Differentiation Formula (BDF) method or a Theta method
(switching between Newton’s method and functional iteration).

2 Specification

SUBROUTINE D03PRF (NPDE, TS, TOUT, PDEDEF, BNDARY, UVINIT, U, NPTS, X,
1 NLEFT, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL,
2 ITOL, NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX,
3 NRMESH, DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF,
4 RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND,
5 IFAIL)

INTEGER NPDE, NPTS, NLEFT, NCODE, NXI, NEQN, ITOL, NXFIX,
1 NRMESH, IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK,
2 ITRACE, IND, IFAIL
double precision TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),

1 ALGOPT(30), XFIX(*), DXMESH, TRMESH, XRATIO, CON,
2 RSAVE(LRSAVE)
LOGICAL REMESH
CHARACTER*1 NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF

3 Description

D03PRF integrates the system of first-order PDEs and coupled ODEs given by the master equations:

Gi x; t;U ;Ux;Ut;V ; _V
� �

¼ 0, i ¼ 1; 2; . . . ;NPDE, a � x � b; t � t0, ð1Þ

Fi t;V ; _V ; �;U
�;U �

x ;U
�
t

� �
¼ 0, i ¼ 1; 2; . . . ;NCODE. ð2Þ

In the PDE part of the problem given by (1), the functions Gi must have the general form

Gi ¼
XNPDE
j¼1

Pi;j

@Uj

@t
þ

XNCODE
j¼1

Qi;j
_V j þ Ri ¼ 0, i ¼ 1; 2; . . . ;NPDE, ð3Þ

where Pi;j, Qi;j and Ri depend on x, t, U , Ux and V .

The vector U is the set of PDE solution values

U x; tð Þ ¼ U 1 x; tð Þ; . . . ;UNPDE x; tð Þ
h iT

,

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V tð Þ ¼ V 1 tð Þ; . . . ;VNCODE tð Þ
h iT

,

and _V denotes its derivative with respect to time.
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In the ODE part given by (2), � represents a vector of n� spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U �,
U �

x and U �
t are the functions U , Ux and Ut evaluated at these coupling points. Each Fi may only depend

linearly on time derivatives. Hence equation (2) may be written more precisely as

F ¼ A� B _V � CU �
t , ð4Þ

where F ¼ F1; . . . ;FNCODE

h iT
, A is a vector of length NCODE, B is an NCODE by NCODE matrix, C is

an NCODE by n� � NPDE
� �

matrix and the entries in A, B and C may depend on t, �, U �, U �
x and V . In

practice you only need to supply a vector of information to define the ODEs and not the matrices B and C.
(See Section 5 for the specification of the user-supplied (sub)program ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a mesh x1; x2; . . . ; xNPTS defined initially by you and (possibly)

adapted automatically during the integration according to user-specified criteria.

The PDE system which is defined by the functions Gi must be specified in the user-supplied (sub)program
PDEDEF.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in a (sub)program UVINIT
supplied by you. Note that UVINIT will be called again following any remeshing, and so U x; t0ð Þ should
be specified for all values of x in the interval a � x � b, and not just the initial mesh points.

For a first-order system of PDEs, only one boundary condition is required for each PDE component Ui.
The NPDE boundary conditions are separated into na at the left-hand boundary x ¼ a, and nb at the right-
hand boundary x ¼ b, such that na þ nb ¼ NPDE. The position of the boundary condition for each
component should be chosen with care; the general rule is that if the characteristic direction of Ui at the
left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for Ui

should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally
results in initialization or integration difficulties in the underlying time integration routines.

The boundary conditions have the master equation form:

GL
i x; t;U ;Ut;V ; _V
� �

¼ 0 at x ¼ a, i ¼ 1; 2; . . . ; na, ð5Þ

at the left-hand boundary, and

GR
i x; t;U ;Ut;V ; _V
� �

¼ 0 at x ¼ b, i ¼ 1; 2; . . . ; nb, ð6Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme routines. If the problem involves derivative (Neumann) boundary
conditions then it is generally possible to restate such boundary conditions in terms of permissible

variables. Also note that GL
i and GR

i must be linear with respect to time derivatives, so that the boundary
conditions have the general form:

XNPDE
j¼1

EL
i;j

@Uj

@t
þ

XNCODE
j¼1

HL
i;j
_V j þ SLi ¼ 0, i ¼ 1; 2; . . . ; na, ð7Þ

at the left-hand boundary, and

XNPDE
j¼1

ER
i;j

@Uj

@t
þ

XNCODE
j¼1

HR
i;j
_V j þ SRi ¼ 0, i ¼ 1; 2; . . . ; nb, ð8Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, H

L
i;j, H

R
i;j, S

L
i and SRi depend on x; t;U and V only.

The boundary conditions must be specified in a (sub)program BNDARY provided by you.

The problem is subject to the following restrictions:

(i) Pi;j, Qi;j and Ri must not depend on any time derivatives;

(ii) t0 < tout, so that integration is in the forward direction;
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(iii) The evaluation of the function Gi is done approximately at the mid-points of the mesh XðiÞ, for
i ¼ 1; 2; . . . ;NPTS, by calling the user-supplied (sub)program PDEDEF for each mid-point in turn.
Any discontinuities in the function must therefore be at one or more of the fixed mesh points
specified by XFIX;

(iv) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE
problem.

The algebraic-differential equation system which is defined by the functions Fi must be specified in the
user-supplied (sub)program ODEDEF. You must also specify the coupling points � in the array XI.

The first-order equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. In this method of lines approach the Keller box scheme is applied to each PDE in the space
variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point. In total there
are NPDE� NPTSþ NCODE ODEs in time direction. This system is then integrated forwards in time
using a Backward Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-
dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer
mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling
wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh.
The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new
mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto
the new mesh and the integration continues.

The method requires you to supply a (sub)program MONITF which specifies in an analytic or numeric
form the particular aspect of the solution behaviour you wish to track. This so-called monitor function is
used to choose a mesh which equally distributes the integral of the monitor function over the domain. A
typical choice of monitor function is the second space derivative of the solution value at each point (or
some combination of the second space derivatives if more than one solution component), which results in
refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates along with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in
order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh
points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The
user-supplied (sub)program UVINIT will then be called again to determine the initial solution values at the
new mesh points (there is no interpolation at this stage) and the integration proceeds.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99
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5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – double precision Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

3: TOUT – double precision Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PRF.

Its specification is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UDOT, UX, NCODE, V, VDOT, RES,
1 IRES)

INTEGER NPDE, NCODE, IRES
double precision T, X, U(NPDE), UDOT(NPDE), UX(NPDE), V(*),

1 VDOT(*), RES(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – double precision Input

On entry: the current value of the independent variable t.

3: X – double precision Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – double precision array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UDOTðNPDEÞ – double precision array Input

On entry: UDOTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for i ¼ 1; 2; . . . ;NPDE.

6: UXðNPDEÞ – double precision array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.
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8: Vð�Þ – double precision array Input

Note: the dimension of the array V must be at least NCODE.

On entry: VðiÞ contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

9: VDOTð�Þ – double precision array Input

Note: the dimension of the array VDOT must be at least NCODE.

On entry: VDOTðiÞ contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

10: RESðNPDEÞ – double precision array Output

On exit: RESðiÞ must contain the ith component of G, for i ¼ 1; 2; . . . ;NPDE, where G is
defined as

Gi ¼
XNPDE
j¼1

Pi;j

@Uj

@t
þ

XNCODE
j¼1

Qi;j
_V j, ð9Þ

i.e., only terms depending explicitly on time derivatives, or

Gi ¼
XNPDE
j¼1

Pi;j

@Uj

@t
þ

XNCODE
j¼1

Qi;j
_V j þ Ri, ð10Þ

i.e., all terms in equation (3).

The definition of G is determined by the input value of IRES.

11: IRES – INTEGER Input/Output

On entry: the form of Gi that must be returned in the array RES. If IRES ¼ �1, then
equation (9) must be used. If IRES ¼ 1, then equation (10) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling (sub)program with the error indicator
set to IFAIL ¼ 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PRF is called.
Parameters denoted as Input must not be changed by this procedure.

5: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the boundary conditions, as given
in (5) and (6).

Its specification is:

SUBROUTINE BNDARY (NPDE, T, IBND, NOBC, U, UDOT, NCODE, V, VDOT,
1 RES, IRES)

INTEGER NPDE, IBND, NOBC, NCODE, IRES
double precision T, U(NPDE), UDOT(NPDE), V(*), VDOT(*), RES(NOBC)
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1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – double precision Input

On entry: the current value of the independent variable t.

3: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0

BNDARY must compute the left-hand boundary condition at x ¼ a.

IBND 6¼ 0

BNDARY must compute of the right-hand boundary condition at x ¼ b.

4: NOBC – INTEGER Input

On entry: specifies the number na of boundary conditions at the boundary specified by
IBND.

5: UðNPDEÞ – double precision array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

6: UDOTðNPDEÞ – double precision array Input

On entry: UDOTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: Vð�Þ – double precision array Input

Note: the dimension of the array V must be at least NCODE.

On entry: VðiÞ contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

9: VDOTð�Þ – double precision array Input

Note: the dimension of the array VDOT must be at least NCODE.

On entry: VDOTðiÞ contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

Note: VDOTðiÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly as in (11) and (12).

10: RESðNOBCÞ – double precision array Output

On exit: RESðiÞ must contain the ith component of GL or GR, depending on the value of

IBND, for i ¼ 1; 2; . . . ;NOBC, where GL is defined as

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ

XNCODE
j¼1

HL
i;j
_V j, ð11Þ

i.e., only terms depending explicitly on time derivatives, or
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GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ

XNCODE
j¼1

HL
i;j
_V j þ SLi , ð12Þ

i.e., all terms in equation (7), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

11: IRES – INTEGER Input/Output

On entry: the form of GL
i (or GR

i ) that must be returned in the array RES. If IRES ¼ �1,
then equation (11) must be used. If IRES ¼ 1, then equation (12) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling (sub)program with the error indicator
set to IFAIL ¼ 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PRF is called.
Parameters denoted as Input must not be changed by this procedure.

6: UVINIT – SUBROUTINE, supplied by the user. External Procedure

UVINIT must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the interval
a; b½ �.
Its specification is:

SUBROUTINE UVINIT (NPDE, NPTS, NXI, X, XI, U, NCODE, V)

INTEGER NPDE, NPTS, NXI, NCODE
double precision X(NPTS), XI(*), U(NPDE,NPTS), V(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

4: XðNPTSÞ – double precision array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: XIð�Þ – double precision array Input

Note: the dimension of the array XI must be at least NXI.

On entry: XIðiÞ contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ;NXI.
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6: UðNPDE,NPTSÞ – double precision array Output

On exit: Uði; jÞ contains the value of the component Ui xj; t0
� �

, for i ¼ 1; 2; . . . ;NPDE;
j ¼ 1; 2; . . . ;NPTS.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: Vð�Þ – double precision array Output

Note: the dimension of the array V must be at least NCODE.

On exit: VðiÞ must contain the value of component V i t0ð Þ, for i ¼ 1; 2; . . . ;NCODE.

UVINIT must be declared as EXTERNAL in the (sub)program from which D03PRF is called.
Parameters denoted as Input must not be changed by this procedure.

7: UðNEQNÞ – double precision array Input/Output

On entry: if IND ¼ 1, the value of U must be unchanged from the previous call.

On exit: UðNPDE� j� 1ð Þ þ iÞ contains the computed solution Ui xj; t
� �

, for i ¼ 1; 2; . . . ;NPDE;
j ¼ 1; 2; . . . ;NPTS, and UðNPTS� NPDEþ kÞ contains Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, evaluated
at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval [a; b].

Constraint: NPTS � 3.

9: XðNPTSÞ – double precision array Input/Output

On entry: the initial mesh points in the space direction. Xð1Þ must specify the left-hand boundary,
a, and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.
On exit: the final values of the mesh points.

10: NLEFT – INTEGER Input

On entry: the number na of boundary conditions at the left-hand mesh point Xð1Þ.
Constraint: 0 � NLEFT � NPDE.

11: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

12: ODEDEF – SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the routines F, which define the system of ODEs, as given in (4). If you
wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF must be the
dummy routine D03PEK. (D03PEK is included in the NAG Fortran Library; however, its name
may be implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:
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SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
1 UCPT, F, IRES)

INTEGER NPDE, NCODE, NXI, IRES
double precision T, V(*), VDOT(*), XI(*), UCP(NPDE,*),

1 UCPX(NPDE,*), UCPT(NPDE,*), F(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – double precision Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: Vð�Þ – double precision array Input

Note: the dimension of the array V must be at least NCODE.

On entry: VðiÞ contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

5: VDOTð�Þ – double precision array Input

Note: the dimension of the array VDOT must be at least NCODE.

On entry: VDOTðiÞ contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIð�Þ – double precision array Input

Note: the dimension of the array XI must be at least NXI.

On entry: XIðiÞ contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE,�Þ – double precision array Input

Note: the second dimension of the array UCP must be at least max 1;NXIð Þ.
On entry: UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE,�Þ – double precision array Input

Note: the second dimension of the array UCPX must be at least max 1;NXIð Þ.

On entry: UCPXði; jÞ contains the value of
@Ui x; tð Þ

@x
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

10: UCPTðNPDE,�Þ – double precision array Input

Note: the second dimension of the array UCPT must be at least max 1;NXIð Þ.

On entry: UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.
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11: Fð�Þ – double precision array Output

Note: the dimension of the array F must be at least NCODE.

On exit: FðiÞ must contain the ith component of F, for i ¼ 1; 2; . . . ;NCODE, where F is
defined as

F ¼ �B _V � CU �
t , ð13Þ

that is, only terms depending explicitly on time derivatives, or

F ¼ A� B _V � CU �
t , ð14Þ

that is, all terms in equation (4). The definition of F is determined by the input value of
IRES.

12: IRES – INTEGER Input/Output

On entry: the form of F that must be returned in the array F. If IRES ¼ �1, then equation
(13) must be used. If IRES ¼ 1, then equation (14) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling (sub)program with the error indicator
set to IFAIL ¼ 4.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PRF is called.
Parameters denoted as Input must not be changed by this procedure.

13: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

14: XIð�Þ – double precision array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points, �i.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

15: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.
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16: RTOLð�Þ – double precision array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0 for all relevant i.

17: ATOLð�Þ – double precision array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

18: ITOL – INTEGER Input

A value to indicate the form of the local error test. ITOL indicates to D03PRF whether to interpret
either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
ei=wik k < 1:0, where wi is defined as follows:

On entry:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the parameter NORM.

Constraint: 1 � ITOL � 4.

19: NORM – CHARACTER*1 Input

On entry: the type of norm to be used.

NORM ¼ M

Maximum norm.

NORM ¼ A

Averaged L2 norm.

If U norm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

U norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

U ið Þ=wið Þ2
vuut ,

while for the maximum norm

U norm ¼ max
i

UðiÞ=wij j.

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

20: LAOPT – CHARACTER*1 Input

On entry: the type of matrix algebra required.
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LAOPT ¼ F

Full matrix methods to be used.

LAOPT ¼ B

Banded matrix methods to be used.

LAOPT ¼ S

Sparse matrix methods to be used.

Constraint: LAOPT ¼ F, B or S

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

21: ALGOPTð30Þ – double precision array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used and
if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is selected
and the integrator encounters difficulty, then there is an automatic switch to the modified
Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE for some i or when there is no _V i tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7 are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.
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ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If ALGOPTð7Þ ¼ 1:0,
then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is not allowed. The
default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be attempted.
The use of tcrit is described under the parameter ITASK. If ALGOPTð1Þ 6¼ 0:0, a value of
0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently specifies that tcrit
will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton iteration
is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value is
ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If ALGOPTð29Þ lies outside this
range then the default value is used. If the routines regard the Jacobian matrix as numerically
singular then increasing ALGOPTð29Þ towards 1:0 may help, but at the cost of increased fill-
in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
is made on the pivot size, and this may be a necessary option if the Jacobian is found to be
numerically singular (see ALGOPTð29Þ). The default value is ALGOPTð30Þ ¼ 0:0001.

22: REMESH – LOGICAL Input

On entry: indicates whether or not spatial remeshing should be performed.

REMESH ¼ :TRUE:

Indicates that spatial remeshing should be performed as specified.

D03 – Partial Differential Equations D03PRF

[NP3657/21] D03PRF.13



REMESH ¼ :FALSE:

Indicates that spatial remeshing should be suppressed.

Note: REMESH should not be changed between consecutive calls to D03PRF. Remeshing can be
switched off or on at specified times by using appropriate values for the parameters NRMESH and
TRMESH at each call.

23: NXFIX – INTEGER Input

On entry: the number of fixed mesh points.

Constraint: 0 � NXFIX � NPTS� 2

Note: the end points Xð1Þ and XðNPTSÞ are fixed automatically and hence should not be specified
as fixed points.

24: XFIXð�Þ – double precision array Input

Note: the dimension of the array XFIX must be at least max 1;NXFIXð Þ.
On entry: XFIXðiÞ, for i ¼ 1; 2; . . . ;NXFIX, must contain the value of the x co-ordinate at the ith
fixed mesh point.

Constraint: XFIXðiÞ < XFIXðiþ 1Þ, for i ¼ 1; 2; . . . ;NXFIX� 1, and each fixed mesh point must
coincide with a user-supplied initial mesh point, that is XFIXðiÞ ¼ XðjÞ for some j,
2 � j � NPTS� 1.

Note: the positions of the fixed mesh points in the array X remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end points)
does not change. You should take this into account when choosing the initial mesh distribution.

25: NRMESH – INTEGER Input

On entry: indicates the form of meshing to be performed.

NRMESH < 0

Indicates that a new mesh is adopted according to the parameter DXMESH. The mesh is
tested every NRMESHj j timesteps.

NRMESH ¼ 0

Indicates that remeshing should take place just once at the end of the first time step reached
when t > TRMESH.

NRMESH > 0

Indicates that remeshing will take place every NRMESH time steps, with no testing using
DXMESH.

Note: NRMESH may be changed between consecutive calls to D03PRF to give greater flexibility
over the times of remeshing.

26: DXMESH – double precision Input

On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A
possible new mesh is calculated at the end of every NRMESHj j time steps, but is adopted only if

xnewi > xoldi þ DXMESH� xoldiþ1 � xoldi

� �
,

or

xnewi < xoldi � DXMESH� xoldi � xoldi�1

� �
.

DXMESH thus imposes a lower limit on the difference between one mesh and the next.

Constraint: DXMESH � 0:0.
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27: TRMESH – double precision Input

On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing will
occur just once at the end of the first time step reached when t is greater than TRMESH.

Note: TRMESH may be changed between consecutive calls to D03PRF to force remeshing at
several specified times.

28: IPMINF – INTEGER Input

On entry: the level of trace information regarding the adaptive remeshing. Details are directed to
the current advisory message unit (see X04ABF).

IPMINF ¼ 0

No trace information.

IPMINF ¼ 1

Brief summary of mesh characteristics.

IPMINF ¼ 2

More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: 0 � IPMINF � 2.

29: XRATIO – double precision Input

On entry: input bound on adjacent mesh ratio (greater than 1:0 and typically in the range 1:5 to 3:0).
The remeshing routines will attempt to ensure that

xi � xi�1ð Þ=XRATIO < xiþ1 � xi < XRATIO� xi � xi�1ð Þ.
Suggested value: XRATIO ¼ 1:5.

Constraint: XRATIO > 1:0.

30: CON – double precision Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space step.
The remeshing routines will attempt to ensure thatZ xiþ1

x1

Fmon xð Þ dx � CON

Z x
NPTS

x1

Fmon xð Þ dx,

(see Furzeland (1984)). CON gives you more control over the mesh distribution e.g., decreasing
CON allows more clustering. A typical value is 2/ NPTS� 1ð Þ, but you are encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.

Suggested value: CON ¼ 2:0= NPTS� 1ð Þ.
Constraint: 0:1= NPTS� 1ð Þ � CON � 10:0= NPTS� 1ð Þ.

31: MONITF – SUBROUTINE, supplied by the user. External Procedure

MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour of
interest.

If you specify REMESH ¼ :FALSE:, i.e., no remeshing, then MONITF will not be called and the
dummy routine D03PEL may be used for MONITF. (D03PEL is included in the NAG Fortran
Library; however, its name may be implementation-dependent: see the Users’ Note for your
implementation for details.)

Its specification is:
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SUBROUTINE MONITF (T, NPTS, NPDE, X, U, FMON)

INTEGER NPTS, NPDE
double precision T, X(NPTS), U(NPDE,NPTS), FMON(NPTS)

1: T – double precision Input

On entry: the current value of the independent variable t.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

4: XðNPTSÞ – double precision array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: UðNPDE,NPTSÞ – double precision array Input

Note: the second dimension of the array U must be at least NPDE� NPTS.

On entry: Uði; jÞ contains the value of Ui x; tð Þ at x ¼ XðjÞ and time t, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS.

6: FMONðNPTSÞ – double precision array Output

On exit: FMONðiÞ must contain the value of the monitor function Fmon xð Þ at mesh point
x ¼ XðiÞ.

MONITF must be declared as EXTERNAL in the (sub)program from which D03PRF is called.
Parameters denoted as Input must not be changed by this procedure.

32: RSAVEðLRSAVEÞ – double precision array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

33: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which D03PRF
is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþNWKRES þ LENODE.

If LAOPT ¼ B , LRSAVE � 3�MLþMU þ 2ð Þ � NEQNþNWKRES þ LENODE.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þNWKRES þ LENODE.

Where

ML and MU are the lower and upper half bandwidths given by
ML ¼ NPDEþ NLEFT� 1, and
MU ¼ 2� NPDE� NLEFT� 1, for problems involving PDEs only, and
ML ¼ MU ¼ NEQN� 1, for coupled PDE/ODE problems.

NWKRES ¼ NPDE� 3� NPDEþ 6� NXIþ NPTSþ 15ð Þ þ NXIþ NCODEþ 7�
NPTSþ NXFIXþ 1, when NCODE > 0 and NXI > 0, and
NWKRES ¼ NPDE� 3� NPDEþ NPTSþ 21ð Þ þ NCODEþ 7� NPTSþ
NXFIXþ 2,
when NCODE > 0 and NXI ¼ 0, and
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NWKRES ¼ NPDE� 3� NPDEþ NPTSþ 21ð Þ þ 7� NPTSþ NXFIXþ 3, when
NCODE ¼ 0.

LENODE ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50, when the BDF method is used, and
LENODE ¼ 9� NEQNþ 50, when the Theta method is used.

Note: when using the sparse option, the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

34: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array ISAVE
concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the ODE method last used in the time integration.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

35: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PRF is
called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 25þ NXFIX;
if LAOPT ¼ B , LISAVE � NEQNþ 25þ NXFIX;
if LAOPT ¼ S , LISAVE � 25� NEQNþ 25þ NXFIX.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message unit
if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

36: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1

Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2

Take one step in the time direction and return.
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ITASK ¼ 3

Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4

Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit,
where tcrit is described under the parameter ALGOPT.

ITASK ¼ 5

Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 � ITASK � 5.

37: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PRF and the underlying ODE solver as
follows:

ITRACE � �1

No output is generated.

ITRACE ¼ 0

Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE ¼ 1

Output from the underlying ODE solver is printed on the current advisory message unit (see
X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and the
time integration during the computation of the ODE system.

ITRACE ¼ 2

Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 1,
except that the advisory messages are given in greater detail.

ITRACE � 3

The output from the underlying ODE solver is similar to that produced when ITRACE ¼ 2,
except that the advisory messages are given in greater detail.

You are advised to set ITRACE ¼ 0, unless you are experienced with sub-chapter D02M/N.

38: IND – INTEGER Input/Output

On entry: must be set to 0 or 1.

IND ¼ 0

Starts or restarts the integration in time.

IND ¼ 1

Continues the integration after an earlier exit from the routine. In this case, only the
parameters TOUT and IFAIL and the remeshing parameters NRMESH, DXMESH,
TRMESH, XRATIO and CON may be reset between calls to D03PRF.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

39: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TSð Þ is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or NPTS < 3,
or NPDE < 1,
or NLEFT not in the range 0 to NPDE,
or NORM 6¼ A or M ,
or LAOPT 6¼ F, B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PRF,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or NXFIX not in the range 0 to NPTS� 2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,
or DXMESH < 0:0,
or IPMINF 6¼ 0, 1 or 2,
or XRATIO � 1:0,
or CON not in the range 0:1= NPTS� 1ð Þ to 10= NPTS� 1ð Þ.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and RTOL,
across the integration range from the current point t ¼ TS. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect positioning of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of the user-supplied (sub)programs PDEDEF, BNDARY or ODEDEF, when the residual in the
underlying ODE solver was being evaluated. Incorrect positioning of boundary conditions may also
result in this error.
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IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check their
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of the user-
supplied (sub)programs PDEDEF, BNDARY or ODEDEF. Integration was successful as far as
t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of the user-supplied (sub)programs, PDEDEF, BNDARY or ODEDEF, IRES was set to an
invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check problem specification
an all parameters and array dimensions. Setting ITRACE ¼ 1 may provide more information. If
the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL is
unlikely to produce any change in the computed solution. (Only applies when you are not operating
in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error description
may be directed to the current advisory message unit). If using the sparse matrix algebra option, the
values of ALGOPTð29Þ and ALGOPTð30Þ may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL). Pure
relative error control ATOLðiÞ ¼ 0:0ð Þ was requested on a variable (the ith) which has become zero.
The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

Not applicable.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was insufficient (more detailed
information may be directed to the current error message unit).

IFAIL ¼ 16

REMESH has been changed between calls to D03PRF.
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7 Accuracy

D03PRF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the
accuracy parameters, ATOL and RTOL.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example in Section 9). In general, a second-order problem
can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-difference
scheme (D03PPF=D03PPA for example), but at the expense of increased CPU time due to the larger
number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be
unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation
Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This
type of problem requires a discretization scheme with upwind weighting (D03PSF for example), or the
addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of the
mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately
proportional to NEQN.

9 Example

This example is the first-order system

@U 1

@t
þ @U1

@x
þ @U 2

@x
¼ 0,

@U 2

@t
þ 4

@U1

@x
þ @U 2

@x
¼ 0,

for x 2 0; 1½ � and t � 0.

The initial conditions are

U 1 x; 0ð Þ ¼ ex,

U 2 x; 0ð Þ ¼ x2 þ sin 2�x2
� �

,

and the Dirichlet boundary conditions for U 1 at x ¼ 0 and U 2 at x ¼ 1 are given by the exact solution:

U 1 x; tð Þ ¼ 1
2 exþt þ ex�3t� �

þ 1
4 sin 2� x� 3tð Þ2

� �
� sin 2� xþ tð Þ2

� �n o
þ 2t2 � 2xt,

U 2 x; tð Þ ¼ ex�3t � exþt þ 1
2 sin 2� x� 3tð Þ2

� �
þ sin 2� xþ tð Þ2

� �n o
þ x2 þ 5t2 � 2xt.

9.1 Program Text

* D03PRF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NV, NXI, NXFIX, NLEFT, NEQN, NIW,

+ NWKRES, LENODE, NW, INTPTS, ITYPE
PARAMETER (NPDE=2,NPTS=61,NV=0,NXI=0,NXFIX=0,NLEFT=1,

+ NEQN=NPDE*NPTS+NV,NIW=25+NXFIX,
+ NWKRES=NPDE*(NPTS+21+3*NPDE)+7*NPTS+NXFIX+3,
+ LENODE=11*NEQN+50,NW=NEQN*NEQN+NEQN+NWKRES+
+ LENODE,INTPTS=5,ITYPE=1)

* .. Scalars in Common ..
DOUBLE PRECISION P
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* .. Local Scalars ..
DOUBLE PRECISION CONST, DXMESH, TOUT, TRMESH, TS, XRATIO, XX
INTEGER I, IFAIL, IND, IPMINF, IT, ITASK, ITOL, ITRACE,

+ NRMESH
LOGICAL REMESH, THETA
CHARACTER LAOPT, NORM

* .. Local Arrays ..
DOUBLE PRECISION ALGOPT(30), ATOL(1), RTOL(1), U(NPDE,NPTS),

+ UE(NPDE,NPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),
+ X(NPTS), XFIX(1), XI(1), XOUT(INTPTS)
INTEGER IW(NIW)

* .. External Functions ..
DOUBLE PRECISION X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL BNDARY, D03PEK, D03PRF, D03PZF, EXACT, MONITF,

+ PDEDEF, UVINIT
* .. Common blocks ..

COMMON /PI/P
* .. Executable Statements ..

WRITE (NOUT,*) ’D03PRF Example Program Results’
P = X01AAF(XX)
ITRACE = 0
ITOL = 1
ATOL(1) = 0.5D-4
RTOL(1) = ATOL(1)
WRITE (NOUT,99996) ATOL, NPTS

*
* Set remesh parameters ..
*

REMESH = .TRUE.
NRMESH = 3
DXMESH = 0.0D0
CONST = 5.0D0/(NPTS-1.0D0)
XRATIO = 1.2D0
IPMINF = 0
WRITE (NOUT,99999) NRMESH

*
* Initialise mesh ..
*

DO 20 I = 1, NPTS
X(I) = (I-1.0D0)/(NPTS-1.0D0)

20 CONTINUE
*

XOUT(1) = 0.0D0
XOUT(2) = 0.25D0
XOUT(3) = 0.5D0
XOUT(4) = 0.75D0
XOUT(5) = 1.0D0
WRITE (NOUT,99998) (XOUT(I),I=1,INTPTS)

*
XI(1) = 0.0D0
NORM = ’A’
LAOPT = ’F’
IND = 0
ITASK = 1

*
* Set THETA to .TRUE. if the Theta integrator is required
*

THETA = .FALSE.
DO 40 I = 1, 30

ALGOPT(I) = 0.0D0
40 CONTINUE

IF (THETA) THEN
ALGOPT(1) = 2.0D0
ALGOPT(6) = 2.0D0
ALGOPT(7) = 1.0D0

END IF
*
* Loop over output value of t
*
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TS = 0.0D0
TOUT = 0.0D0

*
DO 60 IT = 1, 5

TOUT = 0.05D0*IT
IFAIL = 0

*
CALL D03PRF(NPDE,TS,TOUT,PDEDEF,BNDARY,UVINIT,U,NPTS,X,NLEFT,

+ NV,D03PEK,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,
+ ALGOPT,REMESH,NXFIX,XFIX,NRMESH,DXMESH,TRMESH,
+ IPMINF,XRATIO,CONST,MONITF,W,NW,IW,NIW,ITASK,
+ ITRACE,IND,IFAIL)

*
* Interpolate at output points ..

CALL D03PZF(NPDE,0,U,NPTS,X,XOUT,INTPTS,ITYPE,UOUT,IFAIL)
* Check against exact solution ..

CALL EXACT(TS,NPDE,INTPTS,XOUT,UE)
*

WRITE (NOUT,99997) TS
WRITE (NOUT,99994) (UOUT(1,I,1),I=1,INTPTS)
WRITE (NOUT,99993) (UE(1,I),I=1,INTPTS)
WRITE (NOUT,99992) (UOUT(2,I,1),I=1,INTPTS)
WRITE (NOUT,99991) (UE(2,I),I=1,INTPTS)

*
60 CONTINUE

WRITE (NOUT,99995) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ Remeshing every ’,I3,’ time steps’,/)
99998 FORMAT (’ X ’,5F10.4,/)
99997 FORMAT (’ T = ’,F6.3)
99996 FORMAT (//’ Accuracy requirement =’,E10.3,’ Number of points = ’,

+ I3,/)
99995 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6)

99994 FORMAT (’ Approx U1’,5F10.4)
99993 FORMAT (’ Exact U1’,5F10.4)
99992 FORMAT (’ Approx U2’,5F10.4)
99991 FORMAT (’ Exact U2’,5F10.4,/)

END
*

SUBROUTINE UVINIT(NPDE,NPTS,NXI,X,XI,U,NV,V)
* .. Scalar Arguments ..

INTEGER NPDE, NPTS, NV, NXI
* .. Array Arguments ..

DOUBLE PRECISION U(NPDE,NPTS), V(*), X(NPTS), XI(*)
* .. Scalars in Common ..

DOUBLE PRECISION P
* .. Local Scalars ..

INTEGER I
* .. Intrinsic Functions ..

INTRINSIC EXP, SIN
* .. Common blocks ..

COMMON /PI/P
* .. Executable Statements ..

DO 20 I = 1, NPTS
U(1,I) = EXP(X(I))
U(2,I) = X(I)**2 + SIN(2.0D0*P*X(I)**2)

20 CONTINUE
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UDOT,DUDX,NV,V,VDOT,RES,IRES)

* .. Scalar Arguments ..
DOUBLE PRECISION T, X
INTEGER IRES, NPDE, NV

* .. Array Arguments ..
DOUBLE PRECISION DUDX(NPDE), RES(NPDE), U(NPDE), UDOT(NPDE),

+ V(*), VDOT(*)
* .. Executable Statements ..
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IF (IRES.EQ.-1) THEN
RES(1) = UDOT(1)
RES(2) = UDOT(2)

ELSE
RES(1) = UDOT(1) + DUDX(1) + DUDX(2)
RES(2) = UDOT(2) + 4.0D0*DUDX(1) + DUDX(2)

END IF
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,IBND,NOBC,U,UDOT,NV,V,VDOT,RES,IRES)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER IBND, IRES, NOBC, NPDE, NV

* .. Array Arguments ..
DOUBLE PRECISION RES(NOBC), U(NPDE), UDOT(NPDE), V(*), VDOT(*)

* .. Scalars in Common ..
DOUBLE PRECISION P

* .. Local Scalars ..
DOUBLE PRECISION PP

* .. Intrinsic Functions ..
INTRINSIC EXP, SIN

* .. Common blocks ..
COMMON /PI/P

* .. Executable Statements ..
PP = 2.0D0*P
IF (IBND.EQ.0) THEN

IF (IRES.EQ.-1) THEN
RES(1) = 0.0D0

ELSE
RES(1) = U(1) - 0.5D0*(EXP(T)+EXP(-3.0D0*T)) -

+ 0.25D0*(SIN(PP*9.0D0*T**2)-SIN(PP*T**2)) -
+ 2.0D0*T**2

END IF
ELSE

IF (IRES.EQ.-1) THEN
RES(1) = 0.0D0

ELSE
RES(1) = U(2) - (EXP(1.0D0-3.0D0*T)-EXP(1.0D0+T)

+ +0.5D0*(SIN(PP*(1.0D0-3.0D0*T)**2)+SIN(PP*(1.0D0+T)
+ **2))+1.0D0+5.0D0*T**2-2.0D0*T)

END IF
END IF
RETURN
END

*
SUBROUTINE EXACT(T,NPDE,NPTS,X,U)

* Exact solution (for comparison purposes)
* .. Scalar Arguments ..

DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION U(NPDE,NPTS), X(NPTS)

* .. Scalars in Common ..
DOUBLE PRECISION P

* .. Local Scalars ..
DOUBLE PRECISION PP
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP, SIN

* .. Common blocks ..
COMMON /PI/P

* .. Executable Statements ..
PP = 2.0D0*P
DO 20 I = 1, NPTS

U(1,I) = 0.5D0*(EXP(X(I)+T)+EXP(X(I)-3.0D0*T)) +
+ 0.25D0*(SIN(PP*(X(I)-3.0D0*T)**2)-SIN(PP*(X(I)+T)**2))
+ + 2.0D0*T**2 - 2.0D0*X(I)*T

U(2,I) = EXP(X(I)-3.0D0*T) - EXP(X(I)+T) + 0.5D0*(SIN(PP*(X(I)
+ -3.0D0*T)**2)+SIN(PP*(X(I)+T)**2)) + X(I)**2 +
+ 5.0D0*T**2 - 2.0D0*X(I)*T

D03PRF NAG Fortran Library Manual

D03PRF.24 [NP3657/21]



20 CONTINUE
RETURN
END

*
SUBROUTINE MONITF(T,NPTS,NPDE,X,U,FMON)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION FMON(NPTS), U(NPDE,NPTS), X(NPTS)

* .. Local Scalars ..
DOUBLE PRECISION D2X1, D2X2, H1, H2, H3
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC ABS, MAX

* .. Executable Statements ..
DO 20 I = 2, NPTS - 1

H1 = X(I) - X(I-1)
H2 = X(I+1) - X(I)
H3 = 0.5D0*(X(I+1)-X(I-1))

* Second derivatives ..
D2X1 = ABS(((U(1,I+1)-U(1,I))/H2-(U(1,I)-U(1,I-1))/H1)/H3)
D2X2 = ABS(((U(2,I+1)-U(2,I))/H2-(U(2,I)-U(2,I-1))/H1)/H3)
FMON(I) = MAX(D2X1,D2X2)

20 CONTINUE
FMON(1) = FMON(2)
FMON(NPTS) = FMON(NPTS-1)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03PRF Example Program Results

Accuracy requirement = 0.500E-04 Number of points = 61

Remeshing every 3 time steps

X 0.0000 0.2500 0.5000 0.7500 1.0000

T = 0.050
Approx U1 0.9923 1.0894 1.4686 2.3388 2.1071
Exact U1 0.9923 1.0893 1.4686 2.3391 2.1073
Approx U2 -0.0997 0.1057 0.7180 0.0967 0.2021
Exact U2 -0.0998 0.1046 0.7193 0.0966 0.2022

T = 0.100
Approx U1 1.0613 0.9856 1.3120 2.3084 2.1039
Exact U1 1.0613 0.9851 1.3113 2.3092 2.1025
Approx U2 -0.0150 -0.0481 0.1075 -0.3240 0.3753
Exact U2 -0.0150 -0.0495 0.1089 -0.3235 0.3753

T = 0.150
Approx U1 1.1485 0.9763 1.2658 2.0906 2.2027
Exact U1 1.1485 0.9764 1.2654 2.0911 2.2027
Approx U2 0.1370 -0.0250 -0.4107 -0.8577 0.3096
Exact U2 0.1366 -0.0266 -0.4100 -0.8567 0.3096

T = 0.200
Approx U1 1.0956 1.0529 1.3407 1.8322 2.2035
Exact U1 1.0956 1.0515 1.3393 1.8327 2.2050
Approx U2 0.0381 0.1282 -0.7979 -1.1776 -0.4221
Exact U2 0.0370 0.1247 -0.7961 -1.1784 -0.4221

T = 0.250
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Approx U1 0.8119 1.1288 1.5163 1.6076 2.2027
Exact U1 0.8119 1.1276 1.5142 1.6091 2.2035
Approx U2 -0.4968 0.2123 -1.0259 -1.2149 -1.3938
Exact U2 -0.4992 0.2078 -1.0257 -1.2183 -1.3938

Number of integration steps in time = 50
Number of function evaluations = 2579
Number of Jacobian evaluations = 20
Number of iterations = 126
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